Tuning Free Orthogonal Matching Pursuit
نویسندگان
چکیده
Orthogonal matching pursuit (OMP) is a widely used compressive sensing (CS) algorithm for recovering sparse signals in noisy linear regression models. The performance of OMP depends on its stopping criteria (SC). SC for OMP discussed in literature typically assumes knowledge of either the sparsity of the signal to be estimated k0 or noise variance σ , both of which are unavailable in many practical applications. In this article we develop a modified version of OMP called tuning free OMP or TF-OMP which does not require a SC. TF-OMP is proved to accomplish successful sparse recovery under the usual assumptions on restricted isometry constants (RIC) and mutual coherence of design matrix. TF-OMP is numerically shown to deliver a highly competitive performance in comparison with OMP having a priori knowledge of k0 or σ. Greedy algorithm for robust de-noising (GARD) is an OMP like algorithm proposed for efficient estimation in classical overdetermined linear regression models corrupted by sparse outliers. However, GARD requires the knowledge of inlier noise variance which is difficult to estimate. We also produce a tuning free algorithm (TF-GARD) for efficient estimation in the presence of sparse outliers by extending the operating principle of TFOMP to GARD. TF-GARD is numerically shown to achieve a performance comparable to that of the existing implementation of GARD.
منابع مشابه
High SNR consistent compressive sensing
High signal to noise ratio (SNR) consistency of model selection criteria in linear regression models has attracted a lot of attention recently. However, most of the existing literature on high SNR consistency deals with model order selection. Further, the limited literature available on the high SNR consistency of subset selection procedures (SSPs) is applicable to linear regression with full r...
متن کاملWavelet Compressive Sampling Signal Reconstruction Using Upside-Down Tree Structure
This paper suggests an upside-down tree-based orthogonal matching pursuit UDT-OMP compressive sampling signal reconstruction method in wavelet domain. An upside-down tree for the wavelet coefficients of signal is constructed, and an improved version of orthogonal matching pursuit is presented. The proposed algorithm reconstructs compressive sampling signal by exploiting the upside-down tree str...
متن کاملA fast orthogonal matching pursuit algorithm
The problem of optimal approximation of members of a vector space by a linear combination of members of a large overcomplete library of vectors is of importance in many areas including image and video coding, image analysis, control theory, and statistics. Finding the optimal solution in the general case is mathematically intractable. Matching pursuit, and its orthogonal version, provide greedy...
متن کاملImproved Sufficient Conditions for Sparse Recovery with Generalized Orthogonal Matching Pursuit
Generalized orthogonal matching pursuit (gOMP), also called orthogonal multi-matching pursuit, is an extension of OMP in the sense that N ≥ 1 indices are identified per iteration. In this paper, we show that if the restricted isometry constant (RIC) δNK+1 of a sensing matrix A satisfies δNK+1 < 1/ √ K/N + 1, then under a condition on the signal-to-noise ratio, gOMP identifies at least one index...
متن کاملOn the Difference Between Orthogonal Matching Pursuit and Orthogonal Least Squares
Greedy algorithms are often used to solve underdetermined inverse problems when the solution is constrained to be sparse, i.e. the solution is only expected to have a relatively small number of non-zero elements. Two different algorithms have been suggested to solve such problems in the signal processing and control community, orthogonal Matching Pursuit and orthogonal Least Squares respectivel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.05080 شماره
صفحات -
تاریخ انتشار 2017